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Introduction

• Graphical Models
– Brief Overview

• Part I: Tree Structured Graphical Models
– Exact Inference

• Part II: Mixed Membership Models
– Latent Dirichlet Allocation
– Generalizations, Applications

• Part III: Graphical Models for Matrix Analysis
– Probabilistic Matrix Factorization
– Probabilistic Co-clustering  
– Stochastic Block Models
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Graphical Models: What and Why

• Statistical Data Analaysis
– Build diagnostic/predictive models from data
– Uncertainty quantification based on (minimal) assumptions

• The I.I.D. assumption
– Data is independently and identically distributed
– Example: Words in a doc drawn i.i.d. from the dictionary

• Graphical models
– Assume (graphical) dependencies between (random) variables
– Closer to reality, domain knowledge can be captured
– Learning/inference is much more difficult
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Flavors of Graphical Models

• Basic nomenclature
– Node = random variable, maybe observed/hidden
– Edge = statistical dependency

• Two popular flavors: ‘Directed’ and ‘Undirected’
• Directed Graphs

– A directed graph between random variables, causal dependencies
– Example: Bayesian networks, Hidden Markov Models
– Joint distribution is a product of P(child|parents)

• Undirected Graphs
– An undirected graph between random variables
– Example: Markov/Conditional random fields
– Joint distribution in terms of potential functions

X1

X3

X4 X5

X2
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Bayesian Networks

• Joint distribution in terms of P(X|Parents(X))

X1

X3

X4 X5

X2



Graphical Models 6

Example I: Burglary Network

This and several other examples are from the Russell-Norvig AI book



Computing Probabilities of Events

• Probability of any event can be computed:
P(B,E,A,J,M) = P(B)  P(E|B) P(A|B,E)  P(J|B,E,A) P(M|B,E,A,J)

= P(B)  P(E)     P(A|B,E)  P(J|A)         P(M|A)

• Example:
P(b,¬e,a, ¬j,m) = P(b) P(¬e)P(a|b,¬e) P(¬j|a) P(m|a)
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Example II: Rain Network
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Example III: “Car Won’t Start” Diagnosis
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Inference

• Some variables in the Bayes net are observed
– the evidence/data, e.g., John has not called, Mary has called

• Inference
– How to compute value/probability of other variables
– Example: What is the probability of Burglary, i.e., P(b|¬j,m)
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Inference Algorithms

• Graphs without loops: Tree-structured Graphs
– Efficient exact inference algorithms are possible
– Sum-product algorithm, and its special cases

• Belief propagation in Bayes nets
• Forward-Backward algorithm in Hidden Markov Models (HMMs)

• Graphs with loops
– Junction tree algorithms

• Convert into a graph without loops 
• May lead to exponentially large graph

– Sum-product/message passing algorithm, ‘disregarding loops’
• Active research topic, correct convergence ‘not guaranteed’
• Works well in practice

– Approximate inference
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Approximate Inference

• Variational Inference
– Deterministic approximation 
– Approximate complex true distribution over latent variables
– Replace with family of simple/tractable distributions

• Use the best approximation in the family
– Examples: Mean-field, Bethe, Kikuchi, Expectation Propagation

• Stochastic Inference
– Simple sampling approaches
– Markov Chain Monte Carlo methods (MCMC)

• Powerful family of methods
– Gibbs sampling

• Useful special case of MCMC methods



Part I: Tree Structured Graphical Models

• The Inference Problem

• Factor Graphs and the Sum-Product Algorithm

• Example: Hidden Markov Models

• Generalizations
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The Inference Problem
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Complexity of Naïve Inference
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Bayes Nets to Factor Graphs
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Factor Graphs: Product of Local Functions
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Marginalize Product of Functions (MPF)

• Marginalize product of functions

• Computing marginal functions

• The “not-sum” notation
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MPF using Distributive Law

• We focus on two examples: g1(x1) and g3(x3)
• Main Idea: Distributive law  

ab + ac = a(b+c)
• For g1(x1), we have

• For g3(x3), we have
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Computing Single Marginals

• Main Idea:
– Target node becomes the root
– Pass messages from leaves up to the root
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Compute product of descendants with f
Then do not-sum over part

Message Passing
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Compute product of descendants



Example: Computing g1(x1)
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Example: Computing g3(x3)
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Hidden Markov Models (HMMs)
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Latent variables:
z0,z1,…,zt-1,zt,zt+1,…,zT

Observed variables:
x1,…,xt-1,xt,xt+1,…,xT

Inference Problems:
1. Compute p(x1:T) 
2. Compute p(zt|x1:T)
3. Find maxz1:T 

p(z1:T|x1:T)

Similar problem for chain-structured 
Conditional Random Fields (CRFs)



The Sum-Product Algorithm

• To compute gi(xi), form a tree rooted at xi

• Starting from the leaves, apply the following two rules
– Product Rule: 

At a variable node, take the product of descendants
– Sum-product Rule:

At a factor node, take the product of f with descendants; 
then perform not-sum over the parent node

• To compute all marginals
– Can be done one at a time; repeated computations, not efficient
– Simultaneous message passing following the sum-product algorithm
– Examples: Belief Propagation, Forward-Backward algorithm, etc.
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Sum-Product Updates
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Sum-Product Updates
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Example: Step 1
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Example: Step 2
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Example: Step 3
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Example: Step 4
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Example: Step 5
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Example: Termination
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HMMs Revisited
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Latent variables:
z0,z1,…,zt-1,zt,zt+1,…,zT

Observed variables:
x1,…,xt-1,xt,xt+1,…,xT

Inference Problem:
1. Compute p(x1:T)
2. Compute p(zt|x1:T)

Sum-product algorithm is known
as the `forward-backward’ algorithm

Smoothing in Kalman Filtering



Distributive Law on Semi-Rings

• Idea can be applied to any commutative semi-ring
• Semi-ring 101 

– Two operations (+,×): Associative, Commutative, Identity
– Distributive law: a×b + a×c = a×(b+c)
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•Belief Propagation in Bayes nets
•MAP inference in HMMs
•Max-product algorithm
•Alternative to Viterbi Decoding
•Kalman Filtering
•Error Correcting Codes
•Turbo Codes
•…



Message Passing in General Graphs

• Tree structured graphs
– Message passing is guaranteed to give correct solutions
– Examples: HMMs, Kalman Filters

• General Graphs 
– Active research topic

• Progress has been made in the past 10 years
– Message passing

• May not converge
• May converge to a ‘local minima’ of ‘Bethe variational free energy’

– New approaches to convergent and correct message passing

• Applications
– True Skill: Ranking System for Xbox Live
– Turbo Codes: 3G, 4G phones, satellite comm, Wimax, Mars orbiter 
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Part II: Mixed Membership Models

• Mixture Models vs Mixed Membership Models

• Latent Dirichlet Allocation

• Inference
– Mean-Field and Collapsed Variational Inference
– MCMC/Gibbs Sampling

• Applications

• Generalizations
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Background: Plate Diagrams

a

b

3

a

b1 b2 b3

Compact representation of large Bayesian networks
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Model 2: Naïve Bayes (Mixture Models)

Graphical Models
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Naïve Bayes Model 

n k

π z θx

d d
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Naïve Bayes Model 

n k
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Model 3: Mixed Membership Model

Graphical Models
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Mixed Membership Models

π z x

d
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Mixed Membership Models
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Mixture Model vs Mixed Membership Model
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Nd D

zi

xi

π (d)

α

p(d) ∼ Dirichlet(α)

zi ∼ Discrete(π (d) )

xi ∼ Discrete(β (zi) )

K

distribution over topics
for each document

topic assignment 
for each word

distribution over words 
for each topic

word generated from 
assigned topic

Dirichlet priors

Latent Dirichlet Allocation (LDA) 

βj
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z~Discrete(π)

π~Drichlet(α)

β

ββ

ββ

x1 x3x2

z1 z2 z3

π

z11

x11

z12

x12

z13

x13

π1

z21

x21

π2

z22

x22

a
α

x1 x3x2

z
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x1 x3x2

z1 z2 z3

π
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LDA Generative Model

document1 document2
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LDA Generative Model 

document1 document2



Learning: Inference and Estimation
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Variational Inference
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Variational EM for LDA
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E-step: Variational Distribution and Updates
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M-step: Parameter Estimation
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Results: Topics Inferred
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Results: Perplexity Comparison
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Aviation Safety Reports (NASA)
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Results: NASA Reports I

Arrival 
Departure

Passenger Maintenance

runway
approach
departure
altitude

turn
tower

air traffic control
heading
taxi way

flight

passenger
attendant

flight
seat

medical
captain

attendants
lavatory

told
police

maintenance 
engine

mel
zzz

air craft 
installed

check
inspection

fuel
Work
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Results: NASA Reports II

Medical 
Emergency

Wheel 
Maintenance

Weather 
Condition

Departure

medical
passenger

doctor
attendant
oxygen

emergency
paramedics

flight  
nurse
aed

tire
wheel
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The pilot flies an owner's 
airplane with the owner as a 
passenger. Loses contact with 
the center during the flight.

While performing a sky 
diving, a jet approaches at 
the same altitude, but an 

accident is avoided.

Red: Flight Crew Blue: Passenger Green: Maintenance

Two-Dimensional Visualization for Reports
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Altimeter has a problem, but 
the pilot overcomes the 

difficulty during the flight.

During acceleration, a flap retraction 
issue happens. The pilot then returns to 
base and lands. The mechanic finds out 

the problem.

Red: Flight Crew Blue: Passenger Green: Maintenance

Two-Dimensional Visualization for Reports
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The pilot has a landing gear 
problem. Maintenance crew 

joins radio conversation to help. 

The captain has a 
medical emergency.  

Red: Flight crew Blue: Passenger Green: Maintenance

Two-Dimensional Visualization for Reports
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Red: Flight Crew Blue: Passenger Green: Maintenance

Mixed Membership of Reports

Flight Crew: 0.7039
Passenger: 0.0009
Maintenance: 0.2953

Flight Crew: 0.1405
Passenger: 0.0663
Maintenance: 0.7932

Flight Crew: 0.2563
Passenger: 0.6599
Maintenance: 0.0837

Flight Crew: 0.0013
Passenger: 0.0013
Maintenance: 0.9973
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Nd D

zi

xi

p (d)

φ (j)

α

β
p(d) ∼ Dirichlet(α)

zi ∼ Discrete(p (d) )φ (j) ∼ Dirichlet(β)

xi ∼ Discrete(φ (zi) )

T

distribution over topics
for each document

topic assignment 
for each word

distribution over words 
for each topic

word generated from 
assigned topic

Dirichlet priors

Smoothed Latent Dirichlet Allocation 



Stochastic Inference using Markov Chains

• Powerful family of approximate inference methods
– Markov Chain Monte Carlo, Gibbs Sampling

• The basic idea
– Need to marginalize over complex latent variable distribution

p(x|θ) = ∫z p(x,z|θ) = ∫z p(x|θ) p(z|x,θ) = Ez~p(z|x,θ)[p(x|θ)]
– Draw ‘independent’ samples from p(z|x,θ)
– Compute sample based average instead of the full integral

• Main Issue: How to draw samples?
– Difficult to directly draw samples from p(z|x,θ)
– Construct a Markov chain whose stationary distribution is p(z|x,θ)
– Run chain till ‘convergence’
– Obtain samples from p(z|x,θ) 
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The Metropolis-Hastings Algorithm
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The Metropolis-Hastings Algorithm (Contd)
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The Gibbs Sampler

Graphical Models 69



Collapsed Gibbs Sampling for LDA
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Collapsed Variational Inference for LDA
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Collapsed Variational Inference for LDA 
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Results: Comparison of Inference Methods
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Results: Comparison of Inference Methods
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Generalizations

• Generalized Topic Models
– Correlated Topic Models
– Dynamic Topic Models, Topics over Time
– Dynamic Topics with birth/death 

• Mixed membership models over non-text data, applications
– Mixed membership naïve-Bayes
– Discriminative models for classification
– Cluster Ensembles

• Nonparametric Priors
– Dirichlet Process priors: Infer number of topics
– Hierarchical Dirichlet processes: Infer hierarchical structures
– Several other priors: Pachinko allocation, Gaussian Processes, IBP, etc. 
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CTM Results
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DTM Results
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DTM Results II
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Mixed Membership Naïve Bayes

• For each data point,
– Choose π ~ Dirichlet(α)

• For each of observed features fn:
– Choose a class zn ~ Discrete (π)
– Choose a feature value xn from p(xn|zn,fn,Θ), which could be Gaussian, 

Poisson, Bernoulli…
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MMNB vs NB: Perplexity Surfaces

•MMNB typically achieves a lower 
perplexity than NB

•On test set, NB shows overfitting, 
but MMNB is stable and robust.

NB   NB   

NB   

MMNB  

MMNB  

MMNB  



Discriminative Mixed Membership Models 
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Results: DLDA for text classification

Generally, Fast DLDA has a higher accuracy on most of the datasets

Graphical Models
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Topics from DLDA

Graphical Models

cabin flight ice aircraft flight
descent hours aircraft gate smoke

pressurization time flight ramp cabin
emergency crew wing wing passenger

flight day captain taxi aircraft
aircraft duty icing stop captain
pressure rest engine ground cockpit
oxygen trip anti parking attendant

atc zzz time area smell
masks minutes maintenance line emergency



Graphical Models

• Combining multiple base clusterings of a dataset

• Robust and stable
• Distributed and scalable
• Knowledge reuse, privacy preserving

Cluster Ensembles

base clustering1 base clustering2 base clustering3

84
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Problem Formulation

• Input & Output

Data 
points

Base clusterings Consensus clustering

85
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Results: State-of-the-art vs Bayesian Ensembles 

86



Part III: Graphical Models for Matrix Analysis

• Probabilistic Matrix Factorizations

• Probabilistic Co-clustering

• Stochastic Block Structures
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Matrix Factorization

• Singular value decomposition

• Problems
– Large matrices, with millions of row/colums

• SVD can be rather slow
– Sparse matrices, most entries are missing

• Traditional approaches cannot handle missing entries
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≈



• Model X ϵ Rn×m as UVT where
– U is a Rn×k, V is Rm×k

– Alternatively optimize U and V

Matrix Factorization: “Funk SVD”
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Xij = ui
Tvj =

error = (Xij –Xij)2

= (Xij –ui
Tvj)2

^

ui
T

vj

^



• Gradient descent updates

Matrix Factorization (Contd)
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uik
(t+1) = uik

(t) + η (Xij-Xij) vjk
(t)

vjk
(t+1) = vjk

(t) + η (Xij-Xij) ujk
(t)

^

^

Xij = ui
Tvj =

error = (Xij -Xij )2

^

ui
T

vj

^



Probabilistic Matrix Factorization (PMF)
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Xij ~ N(ui
Tvj , σ2)

ui
T

vj

N(0, σu
2I)

N(0, σv
2I)

ui
T ~ N(0, σu

2I)
vj ~ N(0, σv

2I)
Rij   ~ N(ui

Tvj , σ2)

Inference using gradient descent



Bayesian Probabilistic Matrix Factorization
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Xij ~ N(ui
Tvj , σ2)

ui
T

vj

N(µu, Λu)

N(µv, Λv)
µu ~ N(µ0, Λ u), Λ u ~ W(ν0, W0)
µv ~ N(µ0, Λ v), Λ v ~ W(ν0, W0)
ui ~ N(µu, Λ u)
vj ~ N(µv, Λ v)
Rij ~ N(ui

Tvj , σ2)

Wishart

Gaussian

Inference using MCMC



Results: PMF on the Netflix Dataset
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Results: PMF on the Netflix Dataset
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Results: Bayesian PMF on Netflix
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Results: Bayesian PMF on Netflix
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Results: Bayesian PMF on Netflix
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Co-clustering: Gene Expression Analysis

Original Co-clustered
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Co-clustering and Matrix Approximation
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Probabilistic Co-clustering

Row clusters:
Column clusters:          

…

…
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Probabilistic Co-clustering
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Generative Process

2

• Assume a mixed membership for 
each row and column

• Assume a Gaussian for each co-
cluster

1. Pick row/column clusters

2. Generate each entry of the matrix
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Reduction to Mixture Models

3
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Reduction to Mixture Models

3 1.1
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Generative Process

2

• Assume a mixed membership for 
each row and column

• Assume a Gaussian for each co-
cluster

1. Pick row/column clusters

2. Generate each entry of the matrix
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Bayesian Co-clustering (BCC)

2

• A Dirichlet distribution over all 
possible mixed memberships
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Bayesian Co-clustering (BCC)
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Learning: Inference and Estimation
• Learning

– Estimate model parameters 
– Infer ‘mixed memberships’ of individual rows and columns

• Expectation Maximization

• Issues
– Posterior probability cannot be obtained in closed form
– Parameter estimation cannot be done directly

• Approach: Approximate inference
– Variational Inference
– Collapsed Gibbs Sampling, Collapsed Variational Inference

),,( 21 θαα
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Variational EM
• Introduce a variational distribution                                                   

to approximate                                         
• Use Jensen’s inequality to get a tractable lower bound

• Maximize the lower bound w.r.t                         
– Alternatively minimize the KL divergence between  

and

• Maximize the lower bound  w.r.t.                                                                               
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Variational Distribution

• for each row,                            for each column 



Collapsed Inference

• Latent distribution can be exactly marginalized over (π1, π2)
– Obtain p(X,z1,z2|α1, α2,β) in closed form
– Analysis assumes discrete/categorical entries
– Can be generalized to exponential family distributions

• Collapsed Gibbs Sampling
– Conditional distribution of (z1uv,z2uv) in closed form

P(z1
uv=i, z2

uv=j | X, z1
-uv, z2-uv, α1, α2, β)

– Sample states, run sampler till convergence

• Collapsed Variational Bayes
– Variational distribution q(z1,z2|γ) =  ∏u,v q(z1

uv,z2
uv|γuv)

– Gaussian and Taylor approximation to obtain updates for γuv
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Residual Bayesian Co-clustering (RBC)

•(z1,z2) determines the distribution

•Users/movies may have bias

•(m1,m2): row/column means

•(bm1,bm2): row/ column bias
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Results: Datasets

• Movielens: Movie recommendation data 
– 100,000 ratings (1-5) for 1682 movies from 943 users  (6.3%)
– Binarize: 0 (1-3), 1(4-5).
– Discrete (original), Bernoulli (binary), Real (z-scored)

• Foodmart: Transaction data
– 164,558 sales records for 7803 customers and 1559 products  (1.35%)
– Binarize: 0 (less than median), 1(higher than median)
– Poisson (original), Bernoulli (binary), Real (z-scored)

• Jester: Joke rating data
– 100,000 ratings (-10.00,+10.00) for 100 jokes from 1000 users (100%)
– Binarize: 0 (lower than 0), 1 (higher than 0)
– Gaussian (original), Bernoulli (binary), Real (z-scored)
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MMNB BCC LDA

Jester 1.7883 1.8186 98.3742

Movielens 1.6994 1.9831 439.6361

Foodmart 1.8691 1.9545 1461.7463

MMNB BCC LDA

Jester 4.0237 2.5498 98.9964

Movielens 3.9320 2.8620 1557.0032

Foodmart 6.4751 2.1143 6542.9920

Training Set Test Set

On Binary Data 

MMNB BCC

Jester 15.4620 18.2495

Movielens 3.1495 0.8068

Foodmart 4.5901 4.5938

MMNB BCC

Jester 39.9395 24.8239

Movielens 38.2377 1.0265

Foodmart 4.6681 4.5964

Training Set Test Set

Perplexity Comparison with 10 Clusters

On Original Data
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Co-embedding: Users
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Co-embedding: Movies
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RBC vs. other co-clustering algorithms

Jester

•RBC and RBC-FF 
perform better than BCC

•RBC and RBC-FF are 
also the best among others
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RBC vs. other co-clustering algorithms

Foodmart

Movielens
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RBC vs. SVD, NNMF, and CORR

Jester

•RBC and RBC-FF are 
competitive with other 
algorithms
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RBC vs. SVD, NNMF and CORR

Movielens

Foodmart
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SVD vs. Parallel RBC

Parallel RBC scales well to large matrices



Inference Methods: VB, CVB, Gibbs
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Mixed Membership Stochastic Block Models

• Network data analysis
– Relational View: Rows and Columns are the same entity
– Example: Social networks, Biological networks
– Graph View: (Binary) adjacency matrix

• Model
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MMB Graphical Model
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Variational Inference

• Variational lower bound 

• Fully factorized variational distribution

• Variational EM
– E-step: Update variational parameters (γ,ϕ)
– M-step: Update model parameters (α,B)
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Results: Inferring Communities
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Original friendship matrix Friendships inferred from the posterior, respectively 
based on thresholding πp

TBπq and ϕp
TBϕq



Results: Protein Interaction Analysis
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“Ground truth”: MIPS collection of protein interactions (yellow diamond)

Comparison with other models based on protein interactions and 
microarray expression analysis 



Non-parametric Bayes
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Dirichlet Process Mixtures

Chinese Restaurant Processes

Indian Buffet Processes

Pittman-Yor Processes

Gaussian Processes

Hierarchical Dirichlet Processes

Mondrain Processes
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