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Machine learning can shed light on climate change.



Despite the scientific consensus on climate change, drastic
uncertainties remain. For instance:

How does climate change affect extreme events?
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Uncertainty in extremes, especially regional

Warmer atmosphere can hold more water vapor
— heavier precipitation, storms, flooding

Global warming may increase surface evaporation
- heat waves, droughts

Possible changes in El Nino-Southern Oscillation

— changes in floods in some regions, droughts in others

World Climate Research Programme 2013, grand challenge:
understanding and improving predictions of extreme events
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Extreme events are rare by definition.

Climate change may affect their distribution.

=>» Past statistics are not sufficient for future prediction.
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Augment historical data with climate model simulations.

Massive, high-dimensional, big data.

That’s where machine learning comes in!
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Main types of climate data

Past: Historical data
— Limited amounts
— Very heterogeneous

Present: Observation data
— Increasingly measured. Large quantities for recent times.

— Can be unlabeled, sparse, measured at higher resolution than relevant
information

Past, Present, Future: Climate model simulations
— Vast, high-dimensional
— Encodes scientific domain knowledge
— Some information is lost in discretizations
— Future predictions cannot be validated
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What is climate?

* Climate is what you expect, weather is what you get.
* Weather: A thunderstorm, or an unusually high rainfall.
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* Climate: E.g. the 30 year average rainfall in a region.

Credit: D. Ny1/6chka



The Climate System
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Role of Greenhouse gasses, e.g. CO,, CH,
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Climate forcings

* Increasing greenhouse gasses changes the climate: a forcing.
— Human activity can cause this by burning fossil fuel, etc.

* Changes in land use are also a forcing.

e Other (natural) forcings:
— Changes in the sun’s intensity
— Volcanic eruptions
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Main drivers of climate change
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History of climate modeling

Scientific basis for atmospheric simulation
* Rooted in laws of classical mechanics/thermodynamics
— developed during 18th and 19th centuries (see Thompson, 1978)

* Early mathematical model described by Arrhenius (1896)
— surface energy balance model

[Lorenz 1996] Description using nonlinear dynamical systems:

* X, - the current state of the system is thought of as weather
— e.g. a vector of relevant variables

* Climateis E[x] if the system is stationary.
— Compute windowed averages over ~30 years.

* Current view: climate is a distribution, and can change over time.

Credit: D. Nychka, J. J. Hack/A. Gettelman



History of climate modeling

[Lorenz 1996] Description using nonlinear dynamical systems:

* X, - the current state of the system is thought of as weather
— e.g. a vector of relevant variables

Xt—i—l = G(Xt, Ft)

* F,are external “forcings” (human activities, solar radiation, etc.)

 Gis based on physics, usually deterministic.

— Climate models!

22
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Climate Modeling 101

Climate model: a complex e oot

system of interacting
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Intergovernmental Panel on Climate Change

* |[PCC: Intergovernmental Panel on Climate Change

— Nobel Peace Prize 2007 (shared with Al Gore).
— Interdisciplinary scientific body, formed by UN in 1988.

— Fourth Assessment Report, 2007, on global climate change
450 lead authors from 130 countries, 800 contributing authors,
over 2,500 reviewers.

— Fifth Assessment Report, September 2013. Over 830 authors.

Climate models contributing to IPCC reports include:

Bjerknes Center for Climate Research (Norway), Canadian Centre for Climate Modelling
and Analysis, Centre National de Recherches Météorologiques (France), Commonwealth
Scientific and Industrial Research Organisation (Australia), Geophysical Fluid Dynamics
Laboratory (Princeton University), Goddard Institute for Space Studies (NASA), Hadley
Centre for Climate Change (United Kingdom Meteorology Office), Institute of Atmospheric
Physics (Chinese Academy of Sciences), Institute of Numerical Mathematics Climate
Model (Russian Academy of Sciences), Istituto Nazionale di Geofisica e Vulcanologia
(Italy), Max Planck Institute (Germany), Meteorological Institute at the University of Bonn
(Germany), Meteorological Research Institute (Japan), Model for Interdisciplinary
Research on Climate (Japan), National Center for Atmospheric Research (Colorado),

among others. o



IPCC findings: human influence on climate

Black: true observations.
Orange/red: Climate model simulations with human-induced greenhouse gasses.
Blue: Climate model simulations without human-induced greenhouse gasses.
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Modeling future scenarios
4

Ensemble Range:
i 90%
| 85%
st N
- e Constant Emissions
) . 50%
> |
£
Eo2t
©
s
m . .
® Zero Emissions
=
a1
©
0
Q -————-————-— ———————
G | A ST eSS
| Constant Forcing

1950 2000 2050 2100 2150
Black: True observations (until 2006). Year
Orange/red: Constant emissions.
Grey: Constant atmospheric composition (constant forcing).
Blue: Zero emissions starting 2010 (impossible). credit: IPCC 2013



Climate Data is Big Data

GCMs/ESMs (CMIP3/5) (Tb/day)
Satellite retrievals (Tb/day)
Next-gen reanalysis products (Tb/da
In-situ data *””/ / /
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Challenges of climate data

Massive, high-dimensional, spatiotemporal
Data streams, non-stationary (over time and space)
Unlabeled, sparsity, missing data, heterogeneity

Low intrinsic dimension, latent structure
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Outline of Tutorial

For each climate problem, we’ll discuss existing approaches in
climate science, and ML, and open problems.

1.

Paleo-climate reconstruction
What was the climate before we had thermometers?

Climate downscaling
What climate can | expect in my own backyard?

Climate model ensembles
How best to harness the predictions of the IPCC ensemble?

Extreme events
What are extreme events and how will climate change affect them?

Space and time
How to capture dependencies over space and time?

Conclusion and further challenges for ML in climate science
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We'll touch on most of these ML topics

* Graphical models
— MRF/CRF, topic models, inference, structure learning

* Hierarchical Bayesian models

* Matrix completion

* Sparse representations

e Causality

 Multitask learning

* Unsupervised learning

* Online learning

* Analysis of quantiles and extremes
e Spatial statistics

* Deep learning

30



Why should | (NIPS attendee) care?

Very impactful problems for society; climate change mitigation
and adaptation. Chance to affect IPCC.

Data-rich “big data” playground, public data sets
Largely open field for ML, with many low-hanging fruit

Climate scientists are already extremely computationally
sophisticated, writing massive software, running HPC.

— Allows for fruitful collaborations focused on the ML value-add.

— Climate model simulations provide a vast wealth of data/knowledge.

Physics provides some inertia, predictability!

Funding opportunities

31
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Climate Informatics

2011 First International Workshop on Climate Informatics
New York Academy of Sciences
Climate Informatics Wiki launched
2013 “Climate Informatics” book chapter [M et al. 2013]

2015 Please join us in September as Climate Informatics turns 5!
National Center for Atmospheric Research, Boulder CO

In the first 4 years: participants from over 16 countries, 28 states
32



Paleo-climate Reconstruction

33



Paleo-climate reconstruction’

Problem:

— To understand climate change we need to understand past
climates.

— NOTE: climate has fluctuated at much greater scales in the
past than in the 20t Century.

— However the variance on measurements is higher in the past.

* We did not have a global grid of measurements
* Measurements corrupted or lost

Challenge: use paleo-proxies to reconstruct temperatures, CO,

E.g. tree rings, coral, ice cores, lake sediment cores, provide estimates.

34



Paleo-climate reconstruction

Challenge: use paleo-proxies to reconstruct temperature, CO,
concentrations. E.g. tree rings, coral, ice cores, lake sediment cores.

Battle Ground
Lake,
Washington

4,500 years ago

Model
sediment
column

9,500 years ago

11,200 years ago

15,000 years ago

20,000 years ago




“The Hockey Stick Curve”

Northern Hemisphere temperatures 1000AD - 2000AD

NOARTHERN HEMISPHERE
05

("C)

from the 1961 1o 1990 average

o
o

| Al '
. w M ! | Public attention
{ 1T ‘. ) 1 | focused on the

mean curve,
not the variance.

Departures in lemperaturs
=
o

= —t
14 | Data trom thenmometars (red) and from free rings, |
carals, we cores and historical resords (Blue),
1 ' L L 1 i i L 1 i i L L i i L i i 1 1
1000 1200 1400 1600 1600 2000
Yaar

Mann, Bradley and Hughes 1999, JGL. Credit: D. Nychka



Bayesian approach

[Li, Nychka & Ammann, JASA, 2010]
Bayesian hierarchical model used to generate ensembles
P(D,T,8)=P(D|T,8)P(T | 6)P(O)

— P(D | T, 8): Data model: The relationship of the proxies to surface
temperatures

* e.g. linear plus noise. Dj,t — fj (Tt) + €j.t

* The linear filter is deterministic, based on the type of proxy, j. Scalar parameters.

— P(T | 8): Process model: How do surface temperatures evolve in time (and
space)
* Physical model incorporating forcings, plus noise. Scalar parameters.

— P(0O): Priors over statistical parameters (above).
* Chosen based on physical information

Estimate temperature by sampling from the conditional distribution of
temperature, given the observed proxy values.

—  Using MCMC
Credit: D. Nychka
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Bayesian reconstructions of CO,
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Challenge: How to best harness
paleo-proxies to reconstruct
past climates?

Possible ML approaches:

Can sparse matrix completion techniques
play a role?
Discover latent structure?

Related ML issues:
Data fusion (many small data sets!)
Multi-view learning

Increasing Time Before Present

Data Matrix

Reconstruction Period
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[Smerdon & Kaplan, Journal of Climate, 2007]



Climate Downscaling
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Climate Downscaling




Climate Downscaling

OBS GCM DOWNSCALED

450

o ¢ w il
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e Sub-grid scale variables: temperature, precipitation, ...

— Local observations (OBS): Weather stations, remote sensing, ...

— Global models (GCM): Coarse resolution fields

Goal: Understanding Local Climate Change

Credit: K. Hayhoe
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Matching Statistics

e Climate variables: statistics vs (daily) values
* Nonlinear dynamics, hard to project exact value

— Example: Value of (temp, precip) after one year, not predictable

 Statistics are more stable, (hopefully) changes smoothly
— Example: Matching quantiles between GCM and OBS [Li et al., JGR 2010]
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Downscaling: Local Climate

 OBS s for past and current

— What will it be in future?

Delta method [Ramirez et al., 2010]
— Distribution shifts
— No change in shape

DOWNSCALED

L]

Credit: K. Hayhoe

= Historical
w== Future (lower)
m== Future (higher)

0 10 20 30 40 50 60

daily maximum temperature (oC)
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Downscaling: Local Climate

* Quantile mapping [Lietal., JGR 2010]
— Bias-correction

» Statistical asynchronous regression

— Piecewise linear, by month/season
[O'Brien et al., JGR 2001, Dettinger et al., 2004]
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Downscaling Approaches

* Weather typing: Method of analogues [zorita et al., J Clim 1999]
— Matching with previous analogous situations

Sea Surface Temperature (SST) anomalies: El Nino in 1997-98 and 2002-03

 Weather generators
— Match statistical attributes, not values [Semenov et al., CC 1997]
 Multiple linear regression [jeong et al., cC 2012]

— Use statistical influences, relationships
— Spatial smoothing, structural constraints



Dynamical Downscaling

* Regional Climate Models (RCMS) [christensen et al., cC 2007]
— Run RCMs with suitable boundary conditions
— Usually better than GCMs for local climate

Average summer (JJA) rainfall, 1990-1995

4N |5
BN =/

20N

~~~~~~~~

______

Yl ! 1
120W 110W 100W 90W 120W 110W 100W 90W 80W

Credit: X. Liang

— Boundary conditions for future climate? GCMs
— Bias of GCMs affect boundary conditions
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Sparse, Structured Regression

* Influence of oceans on land temperature, precipitation

— Y, over land: temp/precip in 9 regions

— X, over oceans: temperature, sea level pressure, relative humidity,
wind speeds, etc.
[Chatterjee et al.,, SDM 2012, Steinhaeusar et al., CD 2012]

. Europe {_= %
_Eastern US .,
e,

o




Sparse, Structured Regression

High-dimensional regression: Sparse Group Lasso (SGL)

. . 1
e = avgain { 1y = X613 + A (allll + (1~ ) |
HcRp n

Multiple ocean locations, multiple variables in each location
— Few ocean locations are relevant
* Group level sparsity for SGL

— For relevant ocean locations, few covariates are relevant
e Covariate level sparsity for SGL
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Results: SGL vs Baselines

t = Air temperature

p = Precipitation

r = Rel. Humidity

h = Hor. Wind Speed
v = Vert. Wind Speed
s = Sea Level Press.
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LatticeKrig: Spatial Downscaling

e Spatial statistical model [Benestad et al., NCC 2012, Nychka et al., JCGS 2014]

Y, = ZZ.T/)) +g(x,)+ €,

S \ ™~ Noise

Features

Spatial function

* Data at n spatial locations, (x, y;, z;), over time
x;: spatial locations, y,.: observations, z; : features

* Estimate g(x) based on observations
— Uncertainty quantification in estimate



Model: Random effects, Multi-resolution

* Linear model with m basis functions, compact support

g(x) = Echﬂj(x)

* Coefficients c; are random, jointly Gaussian

c ~ N(O, Z) éredit: D. Nychka

— Precision matrix;: ®=2"" is assumed to be sparse
— Gaussian Markov random field
* Multi-resolution: Sum of L independent random effects

g(x) = i g,(x) g (x) = EC’J-% (x)
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Random Coefficients: 1-D example

8 basis functions 8 (random) weights

| | | | | 1 | 1 1 |
0 2 4 6 8 0 2 4 6 8

weighted basis Random curve

Credit: D. Nychka
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Multi-resolution 1-D example

Credit: D. Nychka
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Spatial, Gaussian MRF

* Gaussian MRF covariance 2 = (H'H)? I ~. :
— His sparse, precision is H'H (sparse) p gl (4 5 ’12) -1
— Spatial Auto-Regressive process, k > 0 A =

— Conditional Auto-Regressive, k = 0: Laplacian
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LatticeKrig: Statistical Downscaling

* North America (NA) summer (JJA) precipitation
1720 stations, JJA mean for 1950-2010

* Too coarse for precipitation
* Differences in spatial coverage

 Dependency on
* Local topography
* Multi-resolution spatial variations
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3000

2000

1000

Credit: D. Nychka
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Downscaling with LatticeKrig

Observed JJA Precipitation (mm)

LKrig predicted surface

Credit: D. Nychka
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Challenges for Statistical Downscaling

* Simple vs complex processes, e.g., temp vs precip
— Heterogeneous in space-time, nonsmooth structure, multi-resolution
— Feedback mechanisms and interactions, e.g., land, ocean, atmosphere

* Choice of predictors, feature selection, interpretability
— Set of possible predictors can be large, e.g., in tropics
— Dependence on climate processes vs simple covariates
— Nonlinear dependencies, nonlinear dynamics
e QOscillators, teleconnections
— Phases of oscillators may jointly determine ‘state’
— Low frequency variability

 (Quantiles, Extremes
— Understanding tail behavior

* Predictability
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Climate Model Ensembles
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Why ensembles?
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[Knutti et al. 2010, J. of Climate]: Temperature change (K) 2080-99 relative to 1980-99



Ensembles used in climate science

 Ensembles of opportunity
— Different models from different modeling groups, e.g. the IPCC ensemble

* Initial condition ensembles
— Perturb initial conditions of a single model
— Significant changes possible (cf. Butterfly Effect)

— “Pure ensemble” — perturb only last few significant digits of an initial
condition. Changes the weather but should not change the climate. Used to
robustify estimates of climate.

* Perturbed physics ensembles (PPE)
— Change parameter values of a single model
— Can create drastic changes in predictions

NOTE: weather forecasting also makes use of ensembles (e.g. Bayesian model
averaging).
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Multi-model ensemble used by IPCC

* |[PCC: Intergovernmental Panel on Climate Change

— Nobel Peace Prize 2007 (shared with Al Gore).
— Interdisciplinary scientific body, formed by UN in 1988.

— Fourth Assessment Report, 2007, on global climate change
450 lead authors from 130 countries, 800 contributing authors,
over 2,500 reviewers.

— Fifth Assessment Report, September 2013.

Climate models contributing to IPCC reports include:

Bjerknes Center for Climate Research (Norway), Canadian Centre for Climate Modelling
and Analysis, Centre National de Recherches Météorologiques (France), Commonwealth
Scientific and Industrial Research Organisation (Australia), Geophysical Fluid Dynamics
Laboratory (Princeton University), Goddard Institute for Space Studies (NASA), Hadley
Centre for Climate Change (United Kingdom Meteorology Office), Institute of Atmospheric
Physics (Chinese Academy of Sciences), Institute of Numerical Mathematics Climate
Model (Russian Academy of Sciences), Istituto Nazionale di Geofisica e Vulcanologia
(Italy), Max Planck Institute (Germany), Meteorological Institute at the University of Bonn
(Germany), Meteorological Research Institute (Japan), Model for Interdisciplinary
Research on Climate (Japan), National Center for Atmospheric Research (Colorado),
among others.



Climate models (GCMs)

Climate model: a complex system of interacting mathematical models

e Not data-driven
e Based on scientific first principles

. Mete0r0|ogy Horizontal Grid
(Latitude-Longitude)

« Oceanography
- Geophysics

Vertical Grid i
(Height or Pressure) |

Climate model differences Physical Processes in a Model

solar  terrestrial
radiation radiation
< 1

e Assumptions

)

e Discretizations = S —b e S 2
. . (—r--); ’1_ 3 advection ® L

e Scale interactions | :ééw- T ;
- Micro: rain drop <2t [ momem tawt r O §

- Macro: ocean
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Scale resolution problem
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Scale resolution problem

Some important physical processes cannot be resolved at correct
scale, and are therefore approximated (“parameterizations”).

E.g.
e Moist Processes: Moist convection, shallow convection, large scale
condensation

e Radiation and Clouds: Cloud parameterization, radiation
e Surface Fluxes: Fluxes from land, ocean and sea ice (from data or models)

e Turbulent mixing: Planetary boundary layer parameterization, vertical diffusion,
gravity wave drag

credit: J. J. Hack/A. Gettelman



Global mean temperature anomalies
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Improving predictions of the IPCC ensemble

* Coupled Model Intercomparison Project (CMIP)
[Meehl et al., Bull. AMS, ‘00]

* No one model predicts best all the time, for all variables.

* Average prediction over all models is better predictor than any
single model. [Reichler & Kim, Bull. AMS ‘08], [Reifen & Toumi, GRL ’09]

* Bayesian approaches in climate science e.g. [Smith et al. JASA ’08]

* |IPCC held 2010 Expert Meeting on how to better combine model
predictions.

Can we do better, using Machine Learning?

Challenge: How should we predict future climates?

— While taking into account the multi-model ensemble predictions
69



Machine learning approaches

Tracking Climate Models (TCM) [M, Schmidt, Saroha, & Asplund, SAM
2011; NASA CIDU 2010]: Online learning with expert advice.

* Neighborhood-Augmented TCM (NTCM) [McQuade & M, AAAI 2012]:
Extend TCM to model geospatial neighborhood influence.

* Multi-model regression with spatial smoothing [Subbian & Banerjee,
SDM 2012].

* Climate Prediction via Matrix Completion [Ghafarianzadeh & M, Late-
Breaking Paper, AAAI 2013]: use sparse matrix completion.

* Multi-task Sparse Structure Learning [Goncalves et al. CIKM 2014].

* MRF-based approach [McQuade & M, submitted 2014].
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Average prediction
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Adaptive, weighted average prediction
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Tradeoff: explore vs. exploit

Tradeoff: Quickly finding current best predicting model vs.
being ready to quickly switch to other models.

Tradeoff hinges on how often the identity of the best model
switches.
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Online learning: non-stationary data

Algorithm Learn-a. ‘
. —L(a,t)

P, () Pt+1 (04) X pt(a)e
~—X - ' YT
a-experts1...m [ L&) [ &% | O
Pe,ald) S
o A N
Expertsi=1...n| ) I, ; see | )
< N4 p 4

Learn-a Algorithm [M & Jaakkola, NIPS 2003]:

* Learns the switching rate: level of non-stationarity: a.

* Tracks a set of meta-experts, online learning algorithms, each with a
different value of the a parameter.

77



Online learning: non-stationary data

. Pligslig) —
N Y dpg) Pepnd) = PQENY -0y,
_L jt . .
P41 (i) E pe(5)e "I p(il )
1 1
. ' def _
- y } - yt+1 | p(yt+1|i,y1 , . ."y ) = L(l t+l)

v

 [M & Jaakkola, 2003]: In a family of online learning algorithms, weight updates,
p,(i), equivalent to Bayesian updates of a generalized Hidden Markov Model.
— Hidden variable: identity of “best expert.”
— Transition dynamics, p(i [ j), model non-stationarity.

* [Herbster & Warmuth, 1998]: Fixed-Share algorithm models switching w.p. a.

. (1—a) 1=7
P(ilj;a) = 4, o
n—1 i F£ )
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Incorporating neighborhood influence

[McQuade & M, AAAI 2012]
* Climate predictions are made at higher geospatial resolutions.

* Run instances of Learn-a (variant) on multiple sub-regions that
partition the globe.

 Model neighborhood influences among geospatial regions.

O O O
’ ' . '
eee - Y Y - i i 1 e - 1
O N j O
- /"'\ Z 2 V ;‘-\’ Yy = N
\\_/, \\_/ ,_/’ see
vV .
’ ' . '
P 29 S
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Incorporating neighborhood influence

Neighborhood-augmented Learn-a.
Non-homogenous HMM transition dynamics:

(1 —a) if 1=K
Pli|kia)=< L 1(1=275 P, o
Z (1=5)+ ‘ se; ) L, if 1£Kk

S(r) - neighborhood scheme: set of “neighbors” of region r
* P, (i) - probability of expert (climate model) i in region s

* [ -regulates geospatial influence

 Z-normalization factor
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MRF-based approach

Geospatial lattice

[McQuade & M, submitted]

Time t
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MRF-based approach

30 -
s bAR F-based Method
a5 | — N ) gy ¥
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Global Leam-2&lpha

20 +

15+

10 +

Cumulative Annual Loss

1900 1920 1940 1960 1950

Year
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Climate Prediction via Matrix Completion

[Ghafarianzadeh & M, Late-Breaking Paper, AAAI 2013]

 Goal: combine/improve the predictions of the multi-model ensemble
of GCMs, using sparse matrix completion.

 Exploits past observations, and the predictions of the multi-model
ensemble of GCMs.

* Learning approach is batch, unsupervised.

 Create a sparse (incomplete) matrix from climate model predictions
and observed temperature data.

 Apply a matrix completion algorithm to recover it.

[Keshavan, Montanari & Oh, JMLR "10] OptSpace algorithm: minimization
of nuclear norm; uses spectral techniques and manifold optimization

* Yields predictions of unobserved temperatures.
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Yalidation for years 2005-2012

1

[
— QObservation
m— Prediction
— Average of Models

in)

22

Annual Surface Ait Termperature(Kely

05
1900 1920 1940 1960 1980 2000 2005
Years

Green: observation, Red: mean prediction of climate models, Black: matrix completion

Validation period: 2005-2012
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Yalidation for years 2000-2012
1 T
m— P rediction
Observation
Average of Models

o
n

[

Annual Surface Ait Terperature(Kelvin)

05
1900 1920 1940 1960 1980 2000
Years

Green: observation, Red: mean prediction of climate models, Black: matrix completion

Validation period: 2000-2012

86



Yalidation for years 1990-2012
1
I

— P rediction

Observation

Average of Models

o
n

[

Annual Surface Ait Terperature(Kelvin)

| | | | |
05

1900 1920 1940 1960 1980 1990 2000
Years

Green: observation, Red: mean prediction of climate models, Black: matrix completion

Validation period: 1990-2012
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Yalidation for years 1980-2012
1
I
Observation
m— Prediction
Average of Models

o
n
I

[

Annual Surface Ait Terperature(Kelvin)

0E | 1 | 1
1900 1921 1940 1960 1980 2000
Years

Green: observation, Red: mean prediction of climate models, Black: matrix completion

Validation period: 1980-2012
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Yalidation for years 1970-2012
1
I

in)

Annual Surface Ait Termperature(Kely

0.5
1900 1920 1940 1960 1970 1980 2000
s

Green: observation, Red: mean prediction of climate models, Black: matrix completion

Validation period: 1970-2012
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Outlook

These results suggest some low intrinsic dimensionality.

We induced some sparsity in the input matrix
— Need not ensure low intrinsic dimensionality

[Jia, DelSole & Tippett, J. Climate ‘13] also suggest low intrinsic
dimensionality:

— Only a small number (~2) climatological “predictive components” [DelSole &
Tippett, Rev. Geophys. ‘07] determine the predictive “skill” of climate models
(measured w.r.t. observations).

* General warming trend, and El Nifio-Southern Oscillation

GCM ensemble (or subsets) as lower dimensional subspace

— Can serve as a proxy for the high dimensional, complicated (dependencies,
redundancies) space of climatological components in each GCM.

Suggests future work on tracking a small subset of the ensemble.
— Subset can change over time and space



Challenges in climate modeling

Challenge: Improve the predictions of the multi-model ensemble
— Online learning approaches
* Tracking a small subset of the ensemble, changing over time and space
e {Semi,un}-supervised online learning with experts
— Challenge: try other ML approaches!
— Challenge: predict multiple variables simultaneously
— Challenge: Calibrate and compare climate models in a principled manner

Challenge: Improve the predictions of an individual climate model
— Challenge: resolve scale interactions (“climate model parameterization”)
* Multiscale algorithms for multiscale climate interactions
— Challenge: harness both physics and data!
* Hybrid methods between physics-based models and data driven models

* Data assimilation
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Climate Extremes
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How to define extremes?

@ Threshold in single variable [IPCC special report 2012, p.4]
@ Multiple degrees of severity

@ Related to multiple variables (complex extreme events)
@ Accumulation of non-extremes [IPCC 2012, p.6]

@ Subject to local climate characteristics [IPCC 2012, p.7]
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Machine learning approaches

e Causal attribution of climate extremes [Lozano, Li, Niculescu-
Mizil, Liu, Perlich, Hosking, Abe, KDD 2009].

e Copula-Granger causality [Chen, Liu, Liu & Carbonell, AAAI "10]
for non-Gaussian time series.

e Sparse-GEV [Liu, Bahadori, Li, ICML 2012]. Latent state model for
generalized extreme value time-series.

* Drought detection using MRFs [Fu, Banerjee, Liess, Snyder, SDM
2012].

* Unsupervised detection of extreme events via topic modeling
[Tang & M, Climate Informatics 2014].
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Causal attribution of temp. extremes

Challenge: which factors have contributed to temperature
extremes and to what extent?

[Lozano et al. KDD 2009]:
Which factors Granger-caused extreme temperatures?
* Granger-causality: X Granger-causes Y if past values of X,..influence Y,,,
* Extension to spatiotemporal variables via group Lasso [Arnold et al. KDD ‘07]

* Imposes sparsity, and spatial penalties enforce spatial smoothness,

neighborhood similarity
* Takes estimates from existing GEV models as input

[Liu, Bahadori & Li, ICML, 2012]: Sparse-GEV models to directly infer the (sparse
temporal) dependence structure in multivariate extreme value time series.
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Causal attribution of temp. extremes

[Lozano et al. KDD 2009]:

Variables (Variable group)

Type

Source

Methane (CHy)
Carbon-Dioxide (CO»2)
Hydrogen (Hz2)
Carbon-Monoxide (CO)

Greenhouse
Gases

NOAA

UV (AER)

Aerosol Index

NASA

Temperature (TMP)
Temp Range (TMP)
Temp Min (TMP)
Temp Max (TMP)
Precipitation (PRE)
Vapor (VAP)

Cloud Cover (CLD)
Wet Days (WET)
Frost Days (FRS)

Climate

CRU

Global Horizontal (SOL)
Direct Normal (SOL)

Global Extraterrestrial (SOL)
Direct Extraterrestrial (SOL)

Solar
Radiation

NCDC

I-year return level for

temperature extreme
(TMP.EXT)

Chimate

Estimated

using temp
from CDIAC

TMP.EXT

e,
SOL,

SOL,
™P

FRS®

PRE

)

AE
H4
™P Cco
FRS H2
P ET
V.

TMBEXT

co
H2
WeT
VAP ClD

TMBEXT

TMPEXT

AER

SOL,

TMP

FRS*

PRE

AE

FRS®

PRE

vAp ClD

RTMP EXT

VA D

2

CH4

co

H2

[Liu at al., ICML 2010]: Granger-causal attribution using MRF-based sparse regression.



Copula-Granger Causality

[Chen, Liu, Liu & Carbonell, AAAI’10] [Bahadori & Liu, SDM ‘13]
* How to handle non-Gaussian spatiotemporal climate data?
 Map observations to (hon-paranormal) Gaussian Copula space:
— Assume (fy(Xy),...,f,(X)) ~ N(,Z), where {f} univariate, monotone
 Determine Granger causality over these copula data
— Using lasso variants applied to (f,(X,(t)),...,f,(X,(t))
Quarter 1 Quarter 2 Quarter 3 Quarter 4

U Qaectis U\FO2 4 o, €02 4

DIR DIR
CcO CO

ETRN ETRN
H2 2 H2 b

WET  ETR, WET  ETR,

°CLD  GLO °CLD Lo

VAP T™X® VAP ™X® VAP




Mega-Droughts

* Mega-Droughts

— Persistent over space and time

— Catastrophic consequences
 Examples

— Late 1906s Sahel drought

— 1930s North American Dust Bowl

e Related work in climate science, e.g. Palmer Drought Severity Index

— [Palmer ‘65]: Geophysical index, primarily based on soil moisture

e Discrete hidden Markov random field (HMRF)
[Fu et al., SDM ’12, Wang et al., UAI’13, Wang et al., NIPS'14]
— Each latent node z; is “wet” or “dry,” observed x; is precipitation

— MRF gives smoothness in space and time
 MAP inference with two states: “wet” or “dry”
* Post process to find significant space-time “dry” regions
 Significantly outperforms naive thresholding algorithm 98



Results: Droughts starting in 1920-30s
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Results: Droughts starting in 1960-70s

1 W150 W120 W90 W60 W30 W 0 30 E 60 E 90 E120 E150 E180 E

; ; I AU R Uf “i.. ......
..... / L) .....Dmughtmlnd"’ .
| & : ; \ ; Bangladesh :

100




1901-2006

1901

Major Droughts

.
w
-t
b=

:
L
ot -
O,

) o8
w, .
.@T ¥

A w“

S
o
i

A T

-

LW BOTW 30w

S 150TW

’

o
=N
BO'N
KS.N cmsmsmsesmsms
ey
s N

B Y

- rm s m s m e m s m s s m ..

- me . e e

e

101



Topic modeling approach

[Tang & M, Climate Informatics 2014]

otels Mode
Models Statistical Models ode

Extreme and Non- I
extreme values Extreme values Data type

Single variable Multiple variables Variables
Single event type Multiple event types Events




Climate topic modeling

. Topic proportions and
Topics Documents ;
P assignments
gene 0.04
dna 0.02

genetic 0.01 Seeking Life’s Bare (Genetlc) Necessmes

COLD SPRING HARBOR, NEW YORK— all thar far apart,” <
13

* Genome Mapping and Sequenc-
ing, Cold Spring Harbor. New York, Stripping down. Computer an,
May 8 to 12 mate of the minimum modern and ancien!

SCIENCE e VOL. 272 * 24 MAY 1996

(oplc_nt 0.25196
Year 1971

shunl  0.18842
pr_wtrl 0.16720
slp5 0.15101
rhuml 0.13596 L.
\_press  0.13455 ) Humidity extremely low

f?BPIC_Z 0.24983

rhum5 0.19172
pr_wtr5 0.18384
shum5 0.15476
slpl 0.12487

prest 01016 Soil moisture content extremely low

Heat wave

Document
(bag of words)

!

Topics

Words credit: D. Blei

Geo-locations

Climate

topics

Climate
Descriptors
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Climate topic modeling using LDA

In

P(I,|ts, B)

-

L: number of spatial regions

N: number of observations in region

t : climate topic

| : climate descriptor: discretized observed climate variable

Dirichlet prior on 0
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How to use these results?

TOPIC_1

uwndl
vwndl
slp3
pres3
rhum3
pr_wtr3
shum3
s1p5
pres5
uwnd3

[

OO0 ®

. 24775

. 20485
. 16806
.10586
. 09527
07771
. 06630
.05672
. 04081
. 04037
.03619

TOPIC_2 0.24983 TOPIC_3

0.25046 TOPIC_4

0.05586 vwndl
0.04704 vwnd3
0.04614 slp4d
9.03379 vwnd2

* Defining climate extreme events automatically

* Modeling and detecting complex extreme climate events

* Feature selection for complex extreme events

* Use the results to find spatial covariability of extreme events
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Remaining Challenges for ML

 What are the effects of climate change on extreme events,
especially regional?

 How will distributions of relevant variables change with climate
change?

* Detecting / predicting climate extremes, anomaly detection

* Real-time learning from data streams, tracking extreme events
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Space and Time
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Climate Networks

* Network(s) of interactions between dynamical processes

Cov(X;,X;)

e Correlation Measures |p, = o0t)
O(4X;)0 j

— Pearson correlation

p;(u,v)
pi(w)p;(v)

— Mutual Information MI, = Epij(u,v)log

 Graph over locations, thresholded
— Data: One variable, typically

— Aggregated or segregated
— E.g., EI-Nino/La-Nina, Summer/Winter, ...
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Correlation Networks

* Goal: Construct graph G = (V, E) over nodes V

— Single climate variable, e.g., 500-hPa pressure level height

— Correlation Thresholding

E; =1{[p,

> 0.5}

Total degree at each location

Extratropi nly (>30°N
[Tsonis et al., Physica '04; Tsonis et al., BAMS ’06] tratropics Only (>30°N)

[Tsonis et al., NPG ‘12]
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“Backbone” of Climate Network

* Threshold Mutual Information E; =1{‘Mll.j‘zr}
[Donges et al., EPL ‘09]

- Surface Air Temperature (SAT)

7|

* Betweenness centrality (g~ _

(TTIRT

7, (V)

# shortest paths between i & j through v

__—>| Total # shortest paths betweeni &

i j=v 7711 =

[ENEEL - SREREEEN N W
: > RAL I oY :F-' o N
EaE s dinn T auEs N
N T, \\ W # 5 <]

. A){\-‘\ ik /L////' Y Ly
AN N\ S NSNS o T e i
et G L =
9()I_;:t\::lweennesso(alog1o(BCj?)QE
HEN | e

434 .867 1.301 1.735 2168 2602 3.036 3469 3.903 4.337 477 5204 5638 6.071

Ocean Surface Currents
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Oscillations, Teleconnections, Dipoles

Credit: S. Albers

e Crucial for understanding the climate system

* Causes temperature and precipitation anomalies worldwide

Several oscillations: ENSO (kI Nino Southern Oscillation), NAO (North Atlantic
Oscillation), AO (Arctic Oscillation), AAO (Antarctic Oscillation), AMO (Atlantic Multidecadal
Oscillation), PDO (Pacific Decadal Oscillation), MJO (Madden-Julian Oscillation), |OD (Indian
Ocean Dipole), PNA (Pacific-North American Pattern), ...

[van Loon et al., MWR’78; Wallace et al., MWR’81; von Starch et al.,’02; Walker, MIMD ‘23]
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Monthy mean subtracted anomaly (hPa)

Southern Oscillation Index: SOI

e Sea Level Pressure (SLP) difference: Tahiti and Darwin
— Air pressure fluctuations between east and west tropical Pacific

e Smoothed time series of SOl and ENSO

— Negative SOI: warm ocean waters, El Nino episodes

— Positive SOI: cold ocean waters, La Nina episodes Correlation of land temperature

anomalies with SOI

Latitude

_6 i 1 1 i 1 i 1 1 i I
1993 94 95 96 97 98 99 00 01 02 03
Years

-90 0 90
Credit: V. Kumar Longitude




Monthy mean subtracted anomaly (hPa)

107

-201

-30

North Atlantic Oscillation: NAO

e Pressure difference in north Atlantic
 NAO affects the northern hemisphere

— Positive NAO: High pressure over east US, west Europe

* High temp over east US, north Europe, low temp in Greenland

* Often, low temp in south Europe, Middle East

Correlation of land temperature
anomalies with NAO

301

207

10

0

Latitude

1993 94 95 96 97 98 99 00 01 02 03
Years

-90

0.5

Credit: V. Kumar

-90

0
Longitude
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Automated Discovery of Dipoles

Sea Level Pressure Anomaly [hPa]
OCT1991

90N

60N 1

30N 1

N
i)

£Q

Frequency

308 1

_.
mn o= 0N

60S 1

e}

1 —0.5 o] 0.5 1 1.5
Correlation

——
Pair-wise correlations (~10000 locations) te0 1208 oo ; 6oe 1708 180

-0 -8 -6 -+ -z O 2z 4 & 8 10 12

90N

EQ 1

30S 4

60S 1 i

Frequency
o = v W p 00O N O

208

-
|
0
0
0
0
0]
-

Correlation 180 120 60w __ ol | Isos 120E 1
N IS S —
Pair-wise correlations (locations > 5000 km apart) Consistency in space and time is key

to reduce the search space

Credit: V. Kumar [Kawale et al., SDM ’11; Steinbach et al., KDD ‘03] 114




Automatic Discovery of Dipoles

Credit: V. Kumar

* Detection of Global Dipole Structures
* Most known dipoles discovered
 Some new’ dipoles: Previously unknown phenomenon?

* A new dipole near Australia [Liess et al., J Clim’14]
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“Sparse” Statistical Dependencies

Graph of statistical dependencies: @; = 0 & X; L X, [ X_; _.
* Example: X; Xz | X, X3X, X5 X, X
* Conditional independence:. X, has no explicit influence on X,
* Knowing (X,,X;) is sufficient to (statistically) characterize X,
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Approaches: Correlation, Mutual Information

e Simple dependency structure X

e Why correlation will not work
— X,, X5 can be (strongly) correlated: Corr(X,,X;) #0
— Correlation does not capture conditional independence

e Why Mutual Information (Ml) will not work
— Marginalizing X; makes (X,,X;) dependent
— In general, p(X,,X;) will not factorize: MI(X,,X;) 0 Q_O
X2 X3
e Conditional MI (CMI) will work, but difficult
X,, X5 are conditionally independent: MI(X,,X;|X,) =0
— Infeasible in high-dimensions: Exponentially many CMI computations
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Relationship Between Oscillations

Question: [Ebert-Uphoff et al., J Clim '12] 36 +3.6 (24)
Causal relationships between the four modes? @
WPO Western Pacific Oscillation +9

+3 +O l+0 P

EPO Eastern Pacific Oscillation +30r6
PNA Pacific North America Pattern

NAO North Atlantic Oscillation @ +18
Data:

U+3 6 +3.,6

®* NCEP-NCAR reanalysis data, 1950-2011

Credit: I. Ebert-Uphoff

 Daily 500 mb geopotential height for all four modes (Oct-Mar)

Results:
. Most links consistent with mechanisms in literature.

. Some time scales are new.
. One new link: NAO = PNA (with 3-6 days lag)



Trends: Now vs. Future

a) 1950-2000 observed b) CCSM4 model data c) CCSM4 model data
(NCEP-NCAR reanalysis) Years: 1950-2000 Years: 2050-2100

T U i
0 20 4 Sb 80 100 0 20 40 60 80 100 0 20 40 60 80 100
[number of edges] [number of edges]

Observations: In warmer climate [Deng et al., GRL'14]
* |nformation flow diminishes (hubs disappear)
* Remaining hubs move poleward

Literature: Mid-latitude storm tracks
* Move poleward in warming climate

Difference : c) - b)

[number of edges]



Combining GCMs: Spatial Multi-task Learning

Global Climate Models (GCMs)

r
Ene Outgoing Heat
o lgm.wgy
Transition from
Solid to Vapor Cirrus Clouds
Evaporative
and Heat Energy Atmosphere
Exchanges

Stratus Clouds

Pgmn& Snow Cover

Atmospheric Model Layers

Dependency between
Tasks: South America different regions (tasks)

Source: UCAR/NCAR regional temperature

Combining GCM outputs as Multi-task learning
e Tasks: Climate model weights for a region

* Task based regularization
* Model weights on related tasks should be similar

e Task is a location: Which locations are related?
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Multi-Task Sparse Structure Learning

e Combining GCMs in each location is a task t
— Linear model for each location (task) t, yt = Xt wt + et
— Joint error [e!] over all locations (tasks) is Gaussian

1= [X"w]+[e]. [e]~N(0,6;7)

e Sparse precision matrix for spatial Gaussian

— Non-zero entries of precision reveal task relationships

e Residual Multi-task Sparse Structure Learning (r-MSSL)

— Muli-task Graphical Lasso: Estimate both W = {w'} and ©
[Goncalves et al., CIKM ‘14]
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Dependency: Temperature in South America
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Dependency: Temperature in South America

BRAZIL



RMSE Comparison: r-MSSL vs Baselines

Average Model Best GCM f—E/liSL

1.621 1.410 0.780
(+0.020) (+0.037) (+0.039)
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Challenges for Spatiotemporal Analysis

Predictability

— Nonlinear dynamics, chaos

— Estimate predictability before building models

* Influences over space, time

— Non-stationary, non-linear dependencies, superposition effects
— Many possible predictors, different scales

* Long-range dependencies, feedbacks, memory
— Spatial teleconnections, e.g., pressure dipoles
— Temporal dependencies: local lag, long memory
Spatial diversity, temporal trends

— Avoid fixed, blackbox approach
— Interpretable, in terms of climate processes
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Additional challenges and conclusion
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061 Climate Change

£ o5] Attribution
Challenges :
S o0
g -0.7 5 o
g 0612 %
. . . T wn
* Climate change attribution 3 e
: : = 48 g
— Dependencies on external forcings ] 03 =@
. . 0.2 Solar
— Beyond linear models, correlated noise 01 o
“T0 Volcanic
--0.1
--0.2

T T T T -0.3
1900 1930 1960 1990
Credit: Wikipedia

e (Causal discovery
— Mechanistic understanding
— Chain of events at climate process level ‘\
— E.g., Warm ocean <= forest fires

Credit: Wikimedia
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Challenges

* Extreme events
— Heat waves, heavy precipitation
— Droughts, floods
— Hurricanes, tornadoes

* Behavior and Trends
Over space, time

— Vulnerabilities, impacts

. t.'."" : ;FI "'f ﬂ'*‘ &; ;‘»,.."'v“
. ‘ "“("‘A% ﬂ W
* Tracking changes Sy
— Polarice
— Forest cover, biodiversity

— Water resources

Credit: S. Alur




Challenges

* Nonlinear dynamics, Predictability
— Weather vs Climate

* Few days vs statistics/trends

— Predictability at decadal scales Credit: D. Rothman

* Mutual information I(X,,X,,.), large T
Detection-Attribution
(ETCCDI/ID
. . ntegrated Assessment
* Climate model evaluation Peleo-clmate A\ |oceling Conortium,

=3

— Goal: Improve ESMs/GCMs

. . + Satellite
— Skills on climate processes owao, o simlators
with 1x & 4100, rocess
Use multiple metrics ol e~ daspostcs
—_— moist processe CFMIP-GCSS
P (CFMIP-6CSS 5 ( )
WGNE) ’ i Al semuabions are forced by
oo o
{1 e, emission-diven)
Atmospheric Chemistry
Carbon-climate feedbacks and Aerosols
(CAMIP, IGBP-AIMES) (SPARC, AC&C)

Credit: S. Easterbrook




Challenges

Machine Learning for Physical Processes

Variables obey physics
Physics guided data analysis
Representation, geometry/manifolds, ...

Dynamic models, differential equations, ...

Credit: M. Brooks

Credit: A. de La Camara, et al.
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Conclusion

* Climate Change: Challenges where ML can help
— Paleoclimate: The past
— Downscaling: Local climate
— Climate model ensembles: The future, quantify uncertainty
— Extremes: Tail behavior, impacts
— Space and Time: Complex influences and dependencies

* Many more challenges: Only scratched the surface
— Datasets (and basic tools) are all available

— Work with a domain scientist

e Climate Informatics
— Small but growing community
— Like bioinformatics in the early days
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Resources

Climate Informatics: wow.climateinformatics.org
— Links to resources, Climate Informatics workshops, online community

Climate Informatics Wiki

— Data sets here:
sites.google.com/site/lstclimateinformatics/materials

4t International Workshop on Climate Informatics, 2014
www2 .image.ucar.edu/event/ci2014

4th Workshop on Understanding Climate Change from Data, 2014
www2 .image.ucar.edu/event/fourth-climatechange

IPCC AR5 Report: www.ipcc.ch/report/ar5/

WCRP Grand Challenges:
www.wcrp-climate.org/grand-challenges
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